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ABSTRACT 
In recent years, decision trees have been an uncommon 

approach to design space exploration, and meta-heuristics and 

machine learning have been the primary approach. Although 

these approaches have proven effective, decision trees have the 

unique property that allows us to explicitly traverse the design 

space sequentially, in a human-understandable form. The 
problem is the order of the decisions in the tree is not pre-defined 

but chosen by the user, leading to anisomorphic trees and 

inconsistent performance during design space exploration. In 

the past, we viewed this as a drawback of decision trees that 

designers needed to overcome. However, in this paper, we study 

anisomorphic decision trees representing a satellite mission 

design problem to glean insights into design decision-making in 

general. In this case study, we look at an earth observation 

satellite mission design formulated as an instrument-to-orbit 

assignment problem and quantify the effects of design decision 

tree characteristics. This work has applications in design space 

exploration and design automation when working on complex 
design problems by improving our understanding of how to 

represent and search the space. Additionally, we define the 

relationship between all anisomorphic trees for a problem and a 

novel structure that we call the Design Space Directed Graph, 

contributing to the general understanding of design decisions 

and their mathematical representations.  

  

Keywords: Design Space Exploration, Decision Trees, 

Anisomorphic, Graph Theory, Graph Representations, Design 

Space Directed Graph, 

NOMENCLATURE 
𝑇𝐴,𝐵,𝐶 Design decision tree with ordered 

decisions A, B, and C 

 

𝐷𝑆𝐷𝐺𝑥,𝑦,𝑧  Design Space Directed Graph of 

size x, y, z. 𝑥 ≤ 𝑦 ≤ 𝑧 

 

𝑁𝑑 The number of design decisions that 

must be made to make a complete 

design 

 

𝑁𝑐 The sum of all decision options in 

the design space 

 

𝑡(𝑇𝐴,𝐵,𝐶)

= 𝑡(𝐷𝑆𝐷𝐺𝑥,𝑦,𝑧) 

The set of terminal nodes in tree 

𝑇𝐴,𝐵,𝐶  and  
𝐷𝑆𝐷𝐺𝑥,𝑦,𝑧 representing all complete 

designs 

𝑁𝑡 = |𝑡| The number of terminal nodes or 

complete designs in a design tree or 

DSDG 

 

𝑖(𝑇𝐴,𝐵,𝐶)

≠ 𝑖(𝐷𝑆𝐷𝐺𝑥,𝑦,𝑧) 

The set of intermediate nodes in tree 

𝑇𝐴,𝐵,𝐶  or 𝐷𝑆𝐷𝐺𝑥,𝑦,𝑧  representing 

incomplete designs 
 

𝑁𝑖 The number of intermediate nodes 

or incomplete designs in a design 

tree of DSDG 

 

𝐶𝐸(𝐷𝑆𝐷𝐺𝑥,𝑦,𝑧) The set of continuation edges in 

𝐷𝑆𝐷𝐺𝑥,𝑦,𝑧 ; all bounded 𝑇𝐴,𝐵,𝐶  edges 

are a subset of 𝐶𝐸 
 

𝑀𝐸(𝐷𝑆𝐷𝐺𝑥,𝑦,𝑧) The set of modification edges in 

𝐷𝑆𝐷𝐺𝑥,𝑦,𝑧 which is the complement 

of the set 𝐶𝐸 (meaning they are 

mutually exclusive) 

 

𝑏(𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛), 𝑏(𝑇𝐴,𝐵,𝐶) The branching factor of an 

individual decision and the average 

branching factor of an entire tree, 
respectively 

  

1. INTRODUCTION 
 Searching design spaces for high-quality solutions is at the 

core of effective design. Common approaches to Design Space 

Exploration (DSE) include genetic algorithms, simulated 

annealing, and various other optimization approaches [1]–[4]. 
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Unfortunately, searching decision trees is not currently a 

common approach to the problem. There are some excellent 

reasons for this. The most notable is that decision trees can 

become intractably large after just a handful of choices, and 

simple genetic algorithms can easily outperform tree searches 
[5], [6]. Additionally, because we can place decisions in different 

orders, a single design space can be represented by 𝒏! 
anisomorphic decision trees (anisomorphic, meaning that each 

tree is unique) where 𝒏 is the number of individual decisions 

(assuming we can make each decision only once).  

  

 So what value is there in studying design decision trees? 

First and foremost, design decision trees capture the order of 

decisions the way humans navigate decision problems. A clear 

example of this is when you order a sandwich from Subway [7], 
they ask you to pick bread, meat, cheese, veggies, and 

condiments in that order. However, if they one day asked you to 

choose your condiments first and then work backward, you 

would likely find the experience disorienting [8].  

 

In addition to the characteristic of being ordered, in previous 

work, we have identified multimodality, opaqueness, 

unboundedness, and increasing internal locations as common 

design decision characteristics that can be represented by 

decision trees [5], [6]. Multimodality describes the objective 

function used to evaluate the design space. A multimodal design 

space has multiple local minima and or maxima, meaning that at 
any time, the quality of a design could increase or decrease as 

the result of the next decision.  

 

Closely related to multimodality is opaqueness. Opaqueness 

means we cannot evaluate a design until we have made all 

required design decisions and the design is considered complete. 

One cause of opaqueness can be that we can not apply the 

evaluation method to the incomplete design. For example, you 

would not want to evaluate the quality of a chair that is not yet 

fully assembled by sitting on it. Alternatively, it could be 

infeasible to evaluate incomplete designs due to the time and cost 
to evaluate the increased number of combinations. 

 

Unboundedness means that you can always technically 

make additional decisions. For example, you could tell a 

beleaguered sandwich artist to keep adding more and more 

pepperoni to your sandwich. In this paper, we introduce two 

variants on the property of unboundedness, replacement, and 

addition. Replacement means that new decisions made after a 

design is complete replace old decisions, allowing designers to 

change their minds. Addition means that when designers make 

new decisions, they add something to the design, as exemplified 

by the excess of pepperonis. These characteristics have a unique 
relationship to the topology of the trees that we elaborate on 

below. Another common characteristic related to addition is 

increasing internal locations, which means that the number of 

available decisions increases every time a designer makes a 

decision. For example, when you are building something from 

Lego bricks, each Lego brick added creates a new location for 

you to place additional bricks. However, this characteristic can 

be ignored by constraining the problem to a limited catalog of 

options.  

 

We can represent design spaces possessing some or all of 
these characteristics using a novel representation that we call a 

Design Space Directed Graph (DSDG) where each node 

represents a set of choices composing an incomplete or complete 

design and each edge represents the decision to change the 

current design as demonstrated in FIGURE 1.  

 
FIGURE 1: A DESIGN SPACE DIRECTED GRAPH FOR A DESIGN 
PROBLEM WITH TWO DECISIONS WITH TWO OPTIONS EACH. 
APPENDIX A CONTAINS A LARGER VERSION OF THIS FIGURE. 

In this example we have two decisions that must be made 𝐴 

and 𝐵, both of which have two options. In the Null Node (shown 

in black) neither decision has been made so they are both given 

a value of 0, resulting in 𝐴, 𝐵 = 0,0. The edges are labelled with 

the difference between nodes. So, the edge between 0,0 and 1,0 

is labelled as +1,0. The DSDG is represented by a directed graph 

notation to keep track of changes, however traversals against the 

direction are allowed. In that case, the negative of the change 

would occur. So, moving between 1,0 and 0,0 would represent a 

−1,0 move. You can also think of this as each edge representing 

two traditional directed edges representing opposite changes.  

 

Anisomorphic design decision trees are subgraphs of the 

DSDG as shown in FIGURE 2 where each anisomorph has a 

different path through the DSDG. 
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FIGURE 2: TOP LEFT: DECISIONS TREE IN ORDER A, B. TOP 
RIGHT: DECISION TREE IN ORDER B, A. BOTTOM: THE DSDG 
OF THE DESIGN SPACE WITH THE EDGES OF TREE A, B 
SHOWN IN RED AND THE EDGES OF TREE B, A SHOWN IN 
BLUE. APPENDIX B CONTAINS A LARGER VERSION OF THIS 
FIGURE. 

In this example, we see that in both trees, the initial decision 

is the Null Node (shown in black). To demonstrate their 

relationship to the DSDG, we have color-coded the edges. The 

edges of the Tree containing A first and B second, alternatively 

written as 𝑇𝐴,𝐵  (top left), are shown in red and the edges of the 

Tree with B first and A second, 𝑇𝐵,𝐴 (top right), are shown in 

blue. You can see that both trees exist as subgraphs of the DSDG 

and contain the same Null Node and Terminal Nodes. The 

terminal nodes (shown in purple) represent completed designs. 
In this example of two design decisions with two options each 

(which we can write as 𝐷𝑆𝐷𝐺2,2), the union of the two trees 

represent the complete set of nodes in the 𝐷𝑆𝐷𝐺2,2 and therefore 

account for all the anisomorphic decision trees that can represent 

the design space. However, four edges are present in 𝐷𝑆𝐷𝐺2,2 

that are not present in 𝑇𝐴,𝐵 or 𝑇𝐵,𝐴. To make these edges stand 

out, we have drawn them with a double line. The double-lined 

edges do not represent decisions that continue the design by 

adding new choices but instead represent modifications to 

previous choices. We call these edges Modification Edges, and 

the edges in the trees are called Continuation Edges. 

Modification edges change a previous design decision, and the 

continuation edges make a decision where one has not previously 

been made.  

 

This paper focuses on the characteristics of multimodality, 

opaqueness, and unbounded replacement and examines their 
effects on DSE. We do this through a satellite mission design 

case study informed by a preliminary examination of a toy 

problem. In the toy problem, we explore how the characteristics 

affect tree traversal algorithms' performance. We then perform a 

case study in which we apply insights gained from the toy 

problem to improve the efficiency of a design space exploration 

of an Earth Observation satellite system design problem 

formulated as an instrument-to-orbit assignment problem. We 

hypothesize that by better understanding the effects of the design 
decision tree characteristics, we can search the design decision 

trees more efficiently using common tree traversal algorithms for 

DSE.  

 

1.1 Contribution 
This paper has three major contributions. The first is that it 

introduces the DSDG and describes its relationship to design 

decision trees. The DSDG is a novel graph-based structure for 

representing design spaces with potential applications in 

machine learning, design space exploration, and human 

observation that we plan to explore in future work. The second 

major impact is that it expands on our previous work in 
characterizing general design decision-making by introducing 

unbounded replacement and addition characteristics. While the 

general properties behind these characteristics predate this work, 

we give them names and demonstrate their relationship to the 

novel DSDG. Finally, the third impact of this work is that it 

explores the influences of the design decision characteristics on 

DSE through design decision trees, improving general 

knowledge of DSE, and informing strategies for improved tree 

search performance when specifically dealing with design 

decisions. 

 
1.2 Background 

This work builds on previous research and domain 

knowledge in design automation and satellite mission design. In 

this section, we discuss previous work and important concepts. 

 

1.2.1 Design Space Exploration 
Design Space Exploration (DSE) enables system designers 

to explore various design alternatives before implementing the 

design. For the system designers to find the optimal or most 

preferred design, they must explore many potential design 

candidates [9], [10]. The issue with DSE arises from the sheer 

size of the design space, which grows exponentially with the 
(geometric) average number of options per decision. Another 

problem is that the objectives that measure solution quality may 

be competing, so designs that perform well at one objective may 

perform poorly on another. Finally, the system designer uses 

visual and data analytics to analyze the datasets and draw 

conclusions about the design space to identify the features that 

make a design 'good' or 'bad.' 

 

1.2.3 Satellite Instrument-to-Orbit Assignment 
This paper looks at an instrument-assignment problem to 

design a satellite mission for earth observation. For pre-Phase A 
studies of satellite missions, instrument and orbit selection are 

critical decisions. Instrument selection determines the 

observational capabilities of the system. Pairing an instrument 

suite with an orbit is equally important – different instruments 

will provide the best data in certain orbits, and two instruments 
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on the same spacecraft may have conflicting ideal orbits. Since 

instruments and orbits are closely coupled, in this work we 

consider their joint design space. Instrument-assignment has 

been previously explored in [11]–[13]. 

 
2. METHODS 

In order to carry out this study, we developed a MATLAB 

Application called Tree-Top using MATLAB App Designer 

[14], [15]. Using Tree-Top we performed a case study informed 

by preliminary exploration of a toy problem. In the toy problem 

we used designing a sandwich to look at the effects of  

multimodality and opaqueness on common tree traversal 
algorithms' ability to perform DSE. Additionally, we leverage 

the properties of the DSDG to explore the effects of 

unboundedness. In the satellite instrument-assignment case 

study, we take the insights gained from the toy problem and 

apply them to a real-world satellite mission design problem and 

test to see if we can have a positive impact on DSE performance.  

 

2.1 The Sandwich Problem 
The sandwich design toy problem was created to explore 

anisomorphic design decision trees and DSDGs and their 

characteristics through an example that could be understood by 
all designers regardless of their domain expertise. The design 

space consists of five decisions, 𝑁𝑑 = 5, with a total of 22 

options, 𝑁𝑐 = 22. The decisions are Bread, Meat, Cheese, 

Vegetable, and Condiments. Table 1 shows the available choices 

for each decision.  

 
Table 1: Sandwich Problem Options 

 
 

The sandwich problem is represented by 𝐷𝑆𝐷𝐺3,4,4,5,6 or by 

120 different anisomorphic design decision trees. Each 

anisomorphic tree has a unique notation. For example, a design 

decision tree in the order Bread, Meat, Cheese, Vegetables, and 

Condiments can be denoted by 𝑇𝐵,𝑀,𝐶ℎ,𝑉,𝐶𝑜. The total number of 

unique completed sandwiches for this problem is 1440. 

 

For all experiments performed in this case study the primary 

metric of performance is the mean number of nodes evaluated 

with our objective function before the best possible design is 

found. This means that a perfect score would be 1, meaning that 
the best design was found on the first evaluation.   

  

2.1.1 Multimodality 
To study the effects of multimodality on DSE using a design 

decision tree, we created two different objective functions for the 

sandwich problem. The first objective function is a weighted 

lookup table to evaluate each sandwich through tabulation, 

similar to how you would apply a Pugh Chart [16] with the datum 

set at the second-worst option from the list of choices. The 

weights for each category were Meat=5, Cheese=4, 
Vegetable=3, Bread=2, and Condiments=1. The complete table 

can be found in APPENDIX C. This form of evaluation is not 

multimodal because at every decision the final score can be 

improved by selecting the best ranked individual choice. A 

Sandwich Synergy Matrix was created to make a multimodal 

form of evaluation. In this matrix, we cross-reference each 

choice with every other choice and sum their combined scores to 

obtain a quantifiable measure of sandwich quality. The mean or 

ranked preference of individual choices is kept the same to keep 

things consistent between the two methods. APPENDIX D 

contains the full sandwich synergy matrix. 

 
Using these two separate modes of evaluation, we carried 

out multiple experiments. We performed a Best First Search 

(BFS), Full Factorial Enumeration (FFE), and two variations of 

a Monte Carlo Tree Search (MCTS) on six trees: 𝑇𝑀,𝐶ℎ,𝑉,𝐵,𝐶𝑜 and 

𝑇𝐶𝑜,𝐵,𝑉,𝐶ℎ,𝑀 which represented the choices put in order and 

reverse order of weighting, 𝑇𝐵,𝐶ℎ,𝐶𝑜,𝑀,𝑉 and 𝑇𝑉,𝑀,𝐶𝑜,𝐶ℎ,𝐵  which are 

the trees with the number of choices in ascending and descending 

order, and 𝑇𝐵,𝑀,𝐶ℎ,𝑉,𝐶𝑜 and 𝑇𝐶𝑜,𝑉,𝐶ℎ,𝑀,𝐵 representing the order of 

decisions presented at most chain sandwich restaurants [7] and 

therefore potentially relevant to underlying design grammars 

[17].  

 

The BFS evaluates the current leaf nodes in the tree and 

expands on the node with the best score for continued 

exploration. The FFE evaluates every node in an arbitrary order. 

The two variations of MCTS used were an MCTS with full 
expansion, meaning that on each iteration, the algorithm 

generated a complete sandwich and then evaluated the design 

and backpropagated the results, and an MCTS with partial 

expansion, meaning that on each iteration the algorithm makes 

an individual decision and then back propagates the results.  

 

2.1.2 Opaqueness 
In order to study the effect of opaqueness on tree search 

performance, we compare the results of algorithms that do not 

evaluate incomplete designs and compare them to equivalent 

algorithms that do evaluate incomplete designs. These pairings 

are MCTS with full expansion vs. partial expansion and a BFS 
vs. FFE. BFS and FFE are comparable in this case because FFE 

is the evaluation of all leaf nodes representing completed designs 

without being able to evaluate incomplete designs. 

 

2.1.3 Unbounded Replacement 
To study the effects of replacement, we are taking a different 

approach. Using the DSDG we can prove that mathematically 

treating a problem as unbounded using a Design Decision Tree 

is always redundant and will increase search time and 

computational cost. The proof for this is simple. The number of 

terminal nodes of all anisomorphic design decision trees that 
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 5  

create a complete design, 𝑁𝑡, is the same. In FIGURE 1, in the 

DSDG we can see that the only nodes adjacent to the terminal 

nodes, 𝑡, are incomplete designs, 𝑖, reached by traversing 

backwards against the direction of a continuation edge, 𝐶𝐸, or 

other terminal nodes that can be reached by traversing a 

modification edge, 𝑀𝐸. There is no value to adding duplicate 

incomplete designs to the tree, so we would only want to include 

modification decisions. A straightforward way to represent this 

in the tree would be to add a decision to the tree containing each 

modification edge, as shown in Figure 3. APPENDIX E includes 

a larger version of this figure.  

 
Figure 3: Top: Design Decision Tree A, B with continuation edges 

shown in red and modification edges shown in blue with double 

lines. Bottom: DSDG 2, 2 with edges color-coded to match the 

design decision tree 

The branching factor of this replacement decision would be 
equivalent to the number of design decisions minus one 

multiplied by the number of choices minus the number of choices 

already made (the number of decisions already made is 

equivalent to the number of decisions for a complete design). 

Equation 1 and 2 shows this relationship as a single equation in 

two forms. 

 

𝑏(𝑀𝑜𝑑) = (𝑁𝑑 − 1)(𝑁𝑐 − 𝑁𝑑) (1) 

= 𝑁𝑑 × 𝑁𝑐 − 𝑁𝑑2 + 𝑁𝑑 − 𝑁𝑐 (2) 

 

For the sandwich problem 𝑁𝑑 = 5 and 𝑁𝑐 = 22 giving us a total 

modification branching factor of 68 for the modification 
decision. This is large compared to the other decisions, so our 

expectation is that including modification will drastically reduce 

performance. 

 

2.2 The Satellite Instrument-Assignment Case Study 
The instrument-assignment problem is a real-world DSE 

problem that we have examined in previous work [11], [12], [18]. 

The problem is inherently multimodal and comparatively 
computationally expensive as, in some cases, the evaluation 

could take as long as two minutes per design.  

While the instrument-assignment problem exists in many 

different forms, here we consider a version of the problem with 

five potential instruments (BIOMASS, VIIRS, CMIS, SMAP 

radiometer, SMAP radar), six potential orbit classes (equatorial, 

tropical, polar, SSO-DD, SSO-AM, SSO-PM), and four altitudes 

(400 km, 500 km, 600 km, and 700 km). A complete design 

consists of an orbit class, an altitude, and any subset of the five 

instruments. The total number of possible complete designs is 

768. 

Each complete design is evaluated using complex objective 
functions for cost and scientific value that are multimodal. These 

fitness functions include, for example, calculation of revisit time 

based on instrument field of view and orbit properties.  

Additionally, a full design must be completed before 

evaluation can occur – without an orbit to go with an instrument, 

coverage metrics cannot be evaluated. Therefore, we find that 

the problem is opaque.  

To check the validity of our findings from the first case 

study in application on a real-world problem, we compared what 

we would expect to be the best design decision tree DSE to the 

worst design decision tree DSE. Our metric for comparison is the 
number of evaluations needed to find the best design. Based on 

our explorations with the sandwich toy problem we predict that 

ascending order of branching factor (VIIRS, CMIS, SMAP 

Radiometer, SMAP Radar, BIOMASS, Altitude, and Orbit) will 

perform better than descending order (Orbit Altitude, 

BIOMASS, SMAP Radar, SMAP Radiometer, CMIS, VIIRS) 

and that including modification will lead to reduced DSE 

performance. Table 2 summarizes these hypotheses. We discuss 

the results of the toy problem exploration more below. 

 
Table 2: DSE Performance Predictions 

 
 

3. RESULTS AND DISCUSSION 
This section will explain our findings for the two case 

studies based on various characteristics of decision trees in 

detail. We evaluated the effects of multimodality on full MCTS, 

partial MCTS, Best First, and expected FFE performance. 

 

3.1 The Sandwich Problem 

In the sandwich toy problem, we performed three 

experiments to compare the effects of multimodality, 

opaqueness, and replacement. We found that treating the design 

problem as opaque had the most significant effect overall. 

V,C,Rio,Rar,B,A,O > O,A,V,C,Rio,Rar,B

V,C,Rio,Rar,B,A,O > V,C,Rio,Rar,B,A,O,Mod

HypothesisD
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 6  

Modification in combination with multimodality also had a 

significant effect, but the effect of modification was reduced or 

eliminated when the objective function was non-multimodal. We 

reported the number of evaluations performed before finding the 

best design for deterministic methods (best first and FFE). We 
reported the mean and standard deviation of the number of 

evaluations for the stochastic method before finding the best 

design. For the non-deterministic experiments, we ran ten trials 

each. The following sections detail our results.  

 

3.1.1 Multimodality 

We summarized the results of the multimodality 

experiments in Table 3, with the multimodal cases on the left and 

non-multimodal on the right.  

For the Full Expansion MCTS, there was no general trend 

related to multimodality. This is potentially because the 

algorithm was only looking at completed designs, so changes in 
quality between individual decisions were minor. However, for 

the partial MCTS, there was a general trend of the multimodal 

cases outperforming the non-multimodal cases (𝑝 = 0.043). 

This result was unexpected because common sense would dictate 

that searching a multimodal space should be more difficult. We 

plan to repeat this experiment in future work for validation.  

For the Best First search, the non-multimodal case 

significantly outperformed the multimodal case across the board 

(𝑝 <  .00001). We expected this behavior because, for a non-

multimodal space, a best-first search should find the best design 
when it reaches its first completed design. The variability in the 

results came from the order the decisions were presented, leading 

to a different number of nodes needing to be evaluated before a 

completed design was reached. We expected that descending 

order of decision weight was preferable in both the multimodal 

and non-multimodal cases, but the results suggested the opposite 

was true. However, our expectation that ascending order of the 

branching factor was preferable was supported by the results. 

Additionally, the typical restaurant sequence outperformed its 

opposite.  

We initially planned to perform an experiment for Full 
Factorial Enumeration (FFE) but realized that arbitrary order of 

the choices would bias the results. So instead, we calculated the 

expected number of completed designs that would need to be 

evaluated before the best design was found. This is equal to 

720.5 in the case of the sandwich problem and is the same 

regardless of multimodality. 

There was no general conclusion from these experiments 

that we could draw about multimodality, and future studies are 

needed.  

 

Table 3: Multimodality Results 

 
 

3.1.2 Opaqueness 

Table 4 summarizes the results of the opaqueness 

experiments. The left column presents the opaque methods with 

their non-opaque correspondent in the right column. We repeated 

the experiments with both multimodal and non-multimodal 

evaluation. 

For MCTS, opaqueness would force us to use full 

expansion, and non-opaqueness would allow partial expansion. 

We found that opaqueness was significantly better regardless of 

multimodality (𝑝 <  .00001). This makes sense because the 

non-opaque method has to run more evaluations between 
completed designs.   

Both Best First Search and FFE require evaluating all nodes 

in a subset of the tree before identifying the best design. In the 

case of FFE it evaluates every terminal node, so again we expect 

it to find the best design after 720.5 nodes have been evaluated. 

We can use FFE in opaque cases because we only look at 

completed designs. Best First search is comparable to this 
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 7  

because it looks at the best available option by evaluating 

incomplete designs following the sequence of decisions. In the 

non-multimodal case, the non-opaque Best First method is better 

because it finds the best design once it reaches a terminal node. 

However, in the case of multimodality the Best First approach 
was always worse because the number of nodes that needed to 

be evaluated was significantly higher.  

In general we can conclude from these results that an opaque 

approach is always better unless we have non-multimodal data 

and can apply a Best First search.  

 
Table 4: Opaqueness Results, bolded rows performed better than 

their reversed order counterpart.  

 
 

3.1.3 Replacement 

Table 5 presents the results of the replacement experiments. 

The left column presented the cases without modification 

decisions and the right column with modification. To study the 

effects of replacement, we modified each decision tree to include 

a modification decision at the end of the tree, which enables the 

modification of any prior decision in the tree.  

For the non-multimodal cases, there was no difference 

between the trees with modification and the trees with no 

modification, which aligns with our expectations because a Best 
First search can find the best decision before a modification is 

needed.  

For multimodal trees, we find that the algorithm performs as 

expected in five of the six tree orderings, with the trees without 

a modification option outperforming the modification trees. 

However, in the case of ascending choice, 𝑇𝐵,𝐶ℎ,𝐶𝑜,𝑀,𝑉, the 

algorithm performed better on the tree with the modification. We 

think it's because the algorithm was able to change the first 

choice, which led to finding the best sandwich after reaching the 

first completed sandwich and then making a single modification 

to that sandwich. This demonstrates the potential appeal of 

modification because it will sometimes allow a designer to find 

the best-completed design earlier. However, in almost all cases 
the number of evaluations needed was increased by an order of 

magnitude by adding the modification decision. Additionally, 

almost all multimodal cases performed worse than the expected 

FFE or even max possible FFE, which is 1440 nodes.  

We can conclude that including modification in a tree will 

not benefit DSE performance.  

 
Table 5: Modification Experiment Results 

 
 

3.2. The Satellite Instrument-Assignment  Case Study 
In the satellite instrument-assignment case study, we tested 

three hypotheses informed by the sandwich design toy problem 

results to validate our observations using a real-world problem. 

We treated the problem as opaque and multimodal. Table 6 

summarizes our results. 

The first hypothesis was that placing the decisions in 

increasing order of branching factor would improve performance 
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which we found to be supported by our experiments so far (𝑝 =
0.012). 

Our second hypothesis was that including modification 

would reduce performance which we observed in our results, but 

the effects were marginal (𝑝 = 0.15). 

Our final hypothesis was that the negative impact of 

modification would be less than the negative impact of the worst 

expected sequence. Again we observed this to be supported by 

the evidence, but the result was not clearly significant (𝑝 =
0.067).  

 
Table 6: Satellite Instrument-Assignment Result 

 
 

 

 

4 CONCLUSION 
In this paper, we presented a satellite mission design case 

study informed by exploration of a toy problem to examine the 

effects of the design decision characteristics of multimodality, 

opaqueness, and replacement on Design Space Exploration 

(DSE) using anisomorphic design decision trees.  

Through the toy problem of designing a sandwich to meet 

the first author's personal preference, we found that when a 

design space is multimodal, sequencing the decisions in the 

design decision tree in ascending order of branching factor 

improved performance. Additionally, we found that we can 

expect that allowing for modification decisions will negatively 
impact DSE in all cases.  

In the satellite design case study, we performed 

experiments to validate our observations by applying them to a 

real-world design problem of satellite instrument-assignment. 

We observed that these conclusions appeared to be valid, but 

the effects of modification were marginal. 

In addition to the computational experiment, this paper 

also presents the novel concept of a Design Space Directed 

Graph (DSDG) that relates all anisomorphic design decision 

trees together. 

 

4.1. Future Work 
We plan to explore further the effects of design decision 

characteristics on DSE when using graphs to represent 
decisions. We hope to perform additional experiments to 

validate this paper's conclusion and see if these effects occur 

when we perform a search of the DSDG directly or if they are 

exclusive to the anisomorphic decision trees, which are 

subgraphs of the DSDG. Additionally, we hope to use the 

DSDG as a structure to observe human design decision makers’ 

choices and enable new design automation and design 

assistants by leveraging its unique structure.  
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APPENDIX A 
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APPENDIX B 
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APPENDIX C 
 

 
  

WEIGHT OPTIONS SCORE SCORE x WEIGHT

Ham 1 5

Turkey 3 15

Salami 2 10

Corned Beef 0 0

None Meat -1 -5

WEIGHT OPTIONS SCORE RANK x WEIGHT

Cheddar 1 4

Swiss 2 8

Provolone 0 0

None Cheese -1 -4

WEIGHT OPTIONS SCORE RANK x WEIGHT

Lettuce 2 6

Tomato 4 12

Peppers 3 9

Onions 1 3

Sourkraut 0 0

None Veggies -1 -3

WEIGHT OPTIONS SCORE RANK x WEIGHT

White 0 0

Wheat 1 2

Rye -1 -2

WEIGHT OPTIONS SCORE RANK x WEIGHT

Mayo 1 1

Mustard 2 2

Russian Dressing 0 0

None Condiments -1 -1

BREAD

2

CONDIMENTS

1

5

MEAT

CHEESE

4

VEGETABLE

3
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APPENDIX D 

 
  

Ham

Turkey

Salami

Corned Beef

None Meat

Cheddar

Swiss

Provolone

None Cheese

Lettuce

Tomato

Peppers

Onions

Sourkraut

None Veggies
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APPENDIX E 
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